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Abstract. A simple relation between the frequency of E2g phonon modes and the elastic constant
C44, derived previously for hexagonal-close-packed metals, is found to be reasonably valid for
crystals of solid He, H2, D2 and N2 at or near normal pressure. Good agreement at high pressure
for n-H2 suggests that the connection between C44 and the phonon frequency also holds over a
wide compressional range.

1. Introduction

In lattice dynamical studies [1, 2] of hcp metals using a combination of central and angular
forces between various sets of neighbours but involving at most two adjacent basal planes,
the elastic constant C44 and the E2g† phonon frequency ν(E2g) are related by the following
relation:

ν(E2g) = 1

2π

√
4
√

3a2C44

mc
(1)

where a and c are the lattice constants and m is the atomic mass. The relation arises because in a
harmonic model both C44 and ν(E2g) depend only on the relative lateral motion of undeformed
basal planes. C44-values estimated in this way have been found to be in reasonable agreement
with experimental results for those metals which do not show high elastic anisotropy [4]. One
attraction of equation (1) is that it gives estimates of the elastic constant C44 from E2g phonon
frequencies under extreme conditions, e.g., very high pressures, where a direct experimental
determination of the elastic constants is quite difficult or not possible at present. It is therefore
of particular interest to examine whether this simple relation also holds for other types of
solid. Here we examine its applicability to hexagonal van der Waals bonded phases of He, N2

and solid hydrogens. None of these are simple solids: monatomic helium and the diatomic
hydrogens are quantum crystals of large zero-point energy. Rotational quantum effects, but
of different nature, are important for the H2- and N2-type crystals. At ambient pressure,
H2, D2 as well as 4He crystallize in hcp lattices below their melting points, and β-N2, the
hexagonal-close-packed phase of nitrogen, is stable between 35.6 and 63.1 K [5–7].

† The hcp lattice has two atoms or molecules per unit cell and thus six phonon branches in all, three acoustic and
three optical. At the zone centre there is one LO mode, polarized along the c-axes, and two degenerate TO modes
with polarization within the hexagonal planes. The latter one is the E2g mode in the spectroscopic notation. This
phonon is a shear mode corresponding to the beating of the two hcp sublattices against each other in the two orthogonal
directions in the basal plane.
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For an elastically isotropic hexagonal crystal, the three anisotropy ratios

A1 = 2C44/(C11 − C12) A2 = C33/C11 A3 = C12/C13 (2)

must be simultaneously equal to unity [8]. These three ratios are shown in figure 1 for 4He
[15], the hydrogens [9–12] and nitrogen [13, 14]. One can note that β-N2 is close to being
an elastically isotropic crystal, whereas the hydrogens exhibit elastic anisotropies at normal
pressure, as expressed by the high A3-values, which is perhaps not surprising in view of
their large anharmonicity due to zero-point energy. It is evident that under compression more
isotropic conditions are approached—similar to those found in the metals for which equation (1)
gave reasonable estimates of C44 [4].
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Figure 1. Anisotropy ratios for van der Waals bonded solids. Open circles: p-H2 [9]; open squares:
p-H2 [11]; open diamonds: n-H2 [10]; solid circles: o-D2 [9]; solid diamonds: n-D2 [10]; crosses:
4He [15]; solid triangles: β-N2 [14]; open hexagons: n-H2 [12].

2. Results and discussion

For examination of equation (1) it is necessary to know C44, ν(E2g), a and c for the same
P –T conditions. For He, these data were obtained by neutron scattering studies [15]. The
same holds for the hydrogens [9], where in addition Raman [16–19] and x-ray diffraction
data [20–25] can be used. For β-N2, Brillouin scattering [13, 14] provides data for C44 and
lattice constants are available from x-ray diffraction data [26]. Though for normal pressure
no frequencies of the TO mode were reported for β-N2, a reasonable estimate of the ambient-
pressure frequency is obtained by extrapolating the frequency–volume dependence of this
mode [27] to the normal-pressure volume.
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In table 1, C44-values calculated from equation (1) are compared with experimental C44-
values. C44 calculated in this way agrees well, within 10%, with the experimental C44. The
uncertainties in the lattice parameters are typically 0.05% [9, 15, 20, 21, 26]; for the phonon
frequencies they range from 0.13% for unusually precise Raman data on the hydrogens up
to 15% in the case of β-N2 [9, 15, 16, 27] which propagate also to the calculated C44.
Since the typical uncertainties in the frequency determination are usually 1 cm−1, a more
stringent test of equation (1) can be made at higher E2g frequencies. For normal H2, the E2g

phonon was shown to increase in frequency to the 1000 cm−1 range under pressures as high
as 100 GPa [17–19]. Figure 2 shows C44-values up to 100 GPa calculated from high-pressure
E2g frequencies [19] and lattice parameters [23–25] using equation (1). Below 10 GPa the
experimental C44-values [13], which have uncertainties in the region of 5%, are slightly lower
(10%), but better agreement at higher pressures gives some confidence in the C44-estimates
in the 100 GPa regime. Also shown are C44-values for D2 calculated from the frequencies
[19] and lattice parameters [22, 23]. At low compression, H2 and D2 have nearly identical
values of C44, but with increasing pressure the increase in C44 for H2 is lower than for D2.
This effect, also manifested in the phonon frequencies [19], has been related to anharmonic
perturbations in the intermolecular potential or, assuming a harmonic potential, to differences
in the structural behaviour between H2 and D2 [19]. As regards the phase transitions occurring
at higher pressures [28], it was suggested that the low-pressure phase might be stabilized to
higher pressures in the heavier isotope (D2) [19], which suggests in turn that the observed slight
softening of the E2g mode or C44 for H2 relative to those of D2 might be associated with this
phase transition. Such a behaviour would parallel somewhat the observations made for hcp
metals, where negative frequency shifts and weakening of C44 have been observed coincident
with the occurrence of phase transitions [4, 29–31].

Table 1. Experimental and calculated C44 at or near normal pressure.

C44 (GPa), C44 (GPa),
a (Å) c (Å) ν (cm−1) calculated experimental

β-N2, T = 55 K 4.088 ± 0.001a 6.687 ± 0.001a 20 ± 3b 0.38 ± 0.11 0.35 ± 0.007c

4He, P = 0.14 GPa, T = 8.3 K 3.011 ± 0.002d 4.908 ± 0.002d 38.8 ± 2.7d 0.28 ± 0.039 0.24 ± 0.012d

4He, P = 0.37 GPa, T = 10 K 2.807 ± 0.002d 4.58 ± 0.002d 50.2 ± 0.6d 0.50 ± 0.012 0.566 ± 0.012d

Para-H2, T = 5.4 K 3.7837 ± 0.001e 6.1788 ± 0.001e 37 ± 1f 0.10 ± 0.05 0.11 ± 0.01f

Para-H2, T = 4.2 K 3.7836 ± 0.001e 6.1785 ± 0.001e 36.79 ± 0.05g 0.105 ± 0.0003
Ortho-D2, T = 5 K 3.607 ± 0.001f 5.877 ± 0.001f 38.3 ± 1.2f 0.226 ± 0.06 0.23 ± 0.01f

Ortho-D2, T = 4.2 K 3.603 ± 0.001h 5.885 ± 0.001h 35.83 ± 0.05g 0.20 ± 0.0006

a Reference [26].
b Reference [27].
c References [13, 14] interpolated to 55 K.
d Reference [15].
e Reference [20].
f Reference [9].
g Reference [16].
h Reference [21].

Failure of equation (1) might be expected if the assumptions made in the derivation are
not valid, i.e., if interactions beyond adjacent basal planes become important, or if anharmonic
effects have to be considered. For the van der Waals solids considered here, departure from
equation (1) is small, though some of them—the hydrogens and He near normal pressure—are
distinguished by large anharmonicities due to their large zero-point energy. Equation (1) is
also valid for hydrogen at high pressure, where one might possibly expect interactions between



10426 H Olijnyk and A P Jephcoat

Pressure (GPa)

0 20 40 60 80 100

C
44

 (
G

Pa
)

0

10

20

30

40

50

60

70

80

90

100

110

H2

D2

Figure 2. Calculated C44 (H2, D2) and experimental C44 (H2) [12] as functions of pressure. The
solid and dotted lines represent calculated C44 for n-H2 and n-D2, respectively. Open squares show
Brillouin scattering data [12].

non-adjacent planes to become non-negligible. Note that a pressure of 24 GPa corresponds to
approximately fivefold compression of solid H2 [23, 25].

Although there is no obvious theoretical link with elastic isotropy, the metals for which
equation (1) does not work well are Zn, Cd, Tl and to some extent Be, which all show large
elastic anisotropies [4]. In Zn and Cd the distances to out-of-plane neighbours are different
from those in the basal plane and their linear compressibilities differ considerably [32], which
manifests itself in a high elastic anisotropy. This anisotropy is well known to be caused by
the asymmetric charge distribution of the p electrons in these metals [33]. In the scheme used
for derivation of equation (1) the electronic structure is not explicitly considered, so part of
the interatomic interaction is not incorporated in the model; this might be why equation (1)
does not work well for these metals. Similar arguments may also apply for Be, which is
distinguished by an anisotropy, though not strong, in the p-electron-derived DOS [34]. For
Tl we could not find data on the electronic structure, but the unusual shear anisotropy A3 [4]
might point to peculiarities in the bonding properties, which are determined to a great extent
by the electronic structure in metals.

In a recent paper, Fast et al [35] showed that most of the hcp transition metals depart
from the Cauchy relations C13 = C44 and C12 = C66 much less than their cubic counterparts,
and concluded that their elasticity and lattice dynamics might be reasonably well described by
means of central forces. The Cauchy relations strictly apply to static or harmonic crystals in
which central forces alone operate, and even then only to those Cij which are not associated
with relative motions of sublattices; for the hcp structure, the only relation is C13 = C44,
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although a simple central-force model [3] indicates that departures from C12 = C66 due to
sublattice motion are likely to be fairly small. However, some of the Cauchy ratios for the
van der Waals crystals shown in figure 3 differ from unity by factors up to three, indicating
either strong anharmonic effects or that the forces are not central in nature. In particular, there
is no correlation between the validity of equation (1) and observance of the Cauchy relations.
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Figure 3. The Cauchy relation for van der Waals bonded solids. The assignments and the references
are the same as for figure 1.

3. Summary

In summary, we have shown that a simple expression for C44 in terms of E2g phonon frequencies
and lattice parameters for hcp crystals, derived previously from a lattice dynamical, three-body
force model, gives a reasonable estimate for the elastic constant C44 of the van der Waals
bonded solids N2, He and the hydrogens. Since this relation applies well also to most of the
hcp metals, it is suggested that E2g phonon frequencies can serve as a proxy for this particular
elastic constant in hcp solids in general.
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